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Abstract. We study spinor fields on the phase space of a generic Hamiltonian system. 
Under linearized canonical vansfonnations these spinors vansform according Io the metaplectic 
representation of Sp(2N). We derive a palh i n t e p l  for their time evolution and discuss their 
dynamical and geometrical propenies. In particular we show hat lhey can be interpreted as 
semiclassical wavefunctions for the associated Hamiltonian. 

Gipanimento di Fisica Teorica. Universil2 di We*. Strada Costiera 1 I,  PO Box 586, 

1. Introduction 

In relativistic field theory it is well known that the definition of spinor fields on a (possibly 
curved) spacetime manifold M ,  involves replacing the group of local frame rotations by 
its covering group. Depending on the signature of M n ,  O(n) is replaced by Spin(n), or 
O(1, n - 1) by Spin(l, n - I), respectively. It is perhaps less well known [l] that a similar 
construction can also be performed on the phase space of any quantum system. The role of 
the Lorentz group which rotates the frames in the local tangent spaces is now taken by the 
symplectic group Sp(2N). the group of linear canonical msformations. Tensor fields on 
phase space transform according to tensor products of the vector representation of Sp(2N). 
They are the analogue of integer spin fields on spacetime. What corresponds to fields of 
half-integer spin are the metaplectic spinor fields on phase space. They form representations 
of the covering group of Sp(2N), the metaplectic group Mp(2N). In many respects the 
relation between Mp(2N) and Sp(2N) is similar to the relation between Spin@) and O(n). 
For example, in analogy with the rule = 1 @ 0 for SU(2) representations, say, one 
can combine two metaplectic spinors to form a vector. However, unlike Spin@), which 
possesses finite-dimensional representations, those of Mp(2N) are infinite-dimensional. 
Typically the representation space is a Hilbert space on which Mp(2N) is realized by 
unitary operators. 

In the past, metaplectic representations were mostly studied in the framework of 
geometric quantization [Z] and in the context of the semiclassical approximation [3]. 
More recently metaplectic spinors made their appearance in theories with Parisi-Sourlas 
supersymmetry [4], in the covariant quantization of the Green-Schwarz superstring [5] and 
in models of anyon superconductivity [6]. The purpose of the present paper is to introduce 
and to study a path integral for the time-evolution of metaplectic spinor fields which can 
be defined on the phase space of any Hamiltonian system. The evolution equation for the 
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spinors is specified in such a way that certain bilinears constructed out of them (analogues 
of $y@@ for Dirac fields) transform as vector fields under the Hamiltonian flow. The path 
integral involves an integration over anticommuting 'worldline spinors' I) and 4 transforming 
in the metaplectic representation. It tums out that, on one hand, q and jj are closely related 
to semiclassical wavefunctions, and, on the other hand, they are 'square roots' of the Jacobi 
fields cn which describe small fluctuations around classical trajectories [7]. To be precise, ce 
may be written as j jy"~)  with the metaplectic Duac matrices y o ,  We shall see that the natural 
geometrical setting for metaplectic spinor fields is that of a Hilbert bundle over phase space. 
In the same way as tensor fields 'live' in the local (co)tangent spaces, metaplectic spinor 
fields assume values in (infinitedimensional) Hilbert spaces which should be visualized 
as fibres over the points of phase space. The Jacobi fields are related to Grassmannian 
variables (ghosts) cR which transform in the vector representation of Sp(2n); they provide 
a basis in the local tangent spaces. In a similar way the metaplectic ghosts provide a basis 
in the local Hilbert spaces. 

The rest of this paper is organized as follows. In section 2 we introduce a path integral 
for the Hamiltonian rime evolution of tensors transforming in any representation of Sp(2N). 
In section 3 we construct its spinor representation in a language which is appropriate for 
OUT purposes, and in section 4 we discuss spinor fields on phase space. In section 5 
we investigate the properties of, what we could call, 'worldline spinors' appearing in 
our path integral. Finally in section 6, the worldline spinors are related to semiclassical 
wavefunctions. 

E Gozzi and M Reuter 

2. The path integral 

Let M. be an n-dimensional manifold with local coordinates 6=, and let Diff(M,) be 
the group of diffeomorphisms on M.. Furthermore, let x be an arbitrary tensor or spinor 
field on M,. Under the action of an element of Diff(M,) that drags the field through an 
infinitesimal displacement 8@ = -ha($) (where h = h"3, i s  some vector field on M,) 
the tensor changes by an amount Sx = Inx where 

l h  = ha&, - abhaGh, (2.1) 

denotes the Lie derivative [SI. Here Gb, are the generators of GL(n, R) in the representation 
to which x belongs. If x = (x") is arranged as a column vector, the generators 
Gb, I (Gbte)  form a matrix basis of the corresponding Lie algebra. The indices a, B, . . . 
could be coordinates indices a, b, . . ., h e  indices or spinor indices. Coordinate indices can 
be converted to frame indices by contraction with appropriate vielbein fields. In the resulting 
local frame basis x is a scalar under diffeomorphism, but under local frame rotations it 
may transform in any representation of O(n) or O(1.n - I), respectively. This includes 
spinor representations provided we go over to the covering group Spin(n) or Spin& n - 1). 
respectively. 

M ~ , v  under consideration is not a spacetime 
manifold, but rather the phase space of an arbitrary Hamiltonian system. It is a symplectic 
manifold [9] implying that its dimensionality is, even (n = 2N) and that it carries a closed, 
non-degenerate two-form o = $un&Y' A d@.  For the simplicity of the presentation we 
assume that canonical coordinates qY = (pi, 4'). i = 1,. . . , N, U = 1,. . . ,2N, can be 
introduced globally such that W,,b = -@bo becomes a constant matrix with entries f l .  Its 
inverse is denoted oab: o.,oeb = 8:. The only non-vanishing components of crPb are 

In the present paper the manifold M ,  
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wN+jJ = - 0 '  j N+i = W, i, j 
will serve as a Hamiltonian. It gives rise to the Hamiltonian vector field I81 (a, 

I , .  . . , N. We specify a scalar function H on M ~ N  which 
3/34') 

ha(@) = dbahH(@) (2.2) 

so that Hamilton's equation reads @ = ha(#)). For any two scalar functions f and g on 
M ~ N  we define the Poisson bracket 

if. d p b  = a,foabahg. (2.3) 

In classical Hamiltonian dynamics the time evolution of densities e(@, r )  on phase space is 
govemed by the equation 

- ale = {e, H } ~ ,  = I k e . ~  (2.4) 

The RHs of (2.4) is exactly the Lie derivative of e along the Hamiltonian vector field h .  
Because e is a scalar, Ih has the simple form 1, = h"a,. Tensors of higher rank evolve 
under the Hamiltonian flow in an analogous fashion 

b h -  = bib- - atxa,ay l h x q o r  

(2.5) - hca b h .  c b&- - a hbc c b y  - cxat*2... + a*$ xc. ,... c xmra2... + - '.'. 
In the following we shall consider (2.1)  only for the Hamiltonian vector fields h 
of (2i2) which generate canonical transformations or symplectic diffeomorphisms, i.e. those 
diffeomorphisms which keep invariant the symplectic 2-form U. As the formalism we 
shall set up is covariant only under those transformations, the generators Gbo generate the 
symplectic group Sp(2N) rather than the full GL(2N; R). We shall see that this group plays 
a role similar to the Lorentz group which rotates local frames-in spacetime. 

It is convenient to define 

so that 

ih  = h a &  f ;iKabZab I (2.7) 

= Zbn. If Xu stands for a vector field on M m ~ ,  X"(@) + U'(@), with Koj, = Khn and 
say, then the generators are 

(z$~)'~ = -i(S:wbc + &Y) (2.8) 

and we recover the standard form of the Lie derivative 

IhU' = hbabU" - abhaUb. (2.9) 

Si:nilarly, for one-forms, ~ " ( 4 )  + Fa(4) ,  the generators are 

(2.10) d (E:')~ = i(6:ohd i- 8,b0ud) 
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thus reproducing the usual equation 
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IhF. = hbabFe  + aohhFb. (2.11) 

It is not difficult to check that the matrices (2.8) generate the group Sp(2N) in the vector 
representations. The group elements Sab, with infinitesimal parameters Kob = ~k 

(2.12) 

w&sa,sbd = 6& (2.13) 

i.e. they preserve the symplectic matrix o. Hence they are elements of Sp(2N). The 
converse is also true [3]: any symplectic matrix infinitesimally close to the identity is of 
the form (2.12). The group elements in the representation dual to (2.12) are 

(2.14) 

satisfying 

s/'sbd@cd = Oab. (2.15) 

In an analogous fashion one could write down the generators .Cab in more complicated 
representations of Sp(2N), e.g. tensor products of (2.8) and (2.10). or in the metaplectic 
representation to he introduced in the next section. For the time being let us consider a set 
of fields ,ye(@, t )  which transform under Sp(2N) in any representation. We assume that the 
time evolution of xe(@, t )  is govemed by the equation 

atxe(@. t )  = - [ h ~ . ( @ ,  t )  = -[s:h=aO + : ~ K ~ ~ ~ @ ) @ ~ ~ ) ) , B ] X ~ C A  t )  (2.16) 

with Zab in the appropriate representation. Quation (2.16) generalizes (2.4): for scalar 
functions x = p the RHS of (2.16) is a conventional Poisson bracket. Next we show that 
also for tensors or spinors x. the RHS of  (2.16) may be interpreted as a Poisson bracket 
provided one works on an extended phase space Melt rather than the usual one, M Z N .  The 
extended phase space 171 Me,[ is a supermanifold [IO] coordinatized by (@',A., q', ija) 

where @', a = 1, . . . ,2N, are the usual coordinates on M m ,  An is a set of 2N bosonic 
auxiliary variables conjugate to @', while vu and rje are anticommuting Grassmannian 
variables. We define on Mer[ the extended Poisson bracket (epb) structure 

(2.17) . ,  
[Gfi? f lepb = {qa. ?fi]epb = 0 = [&, &]cpb 

such that the A#'s become the 'momenta' conjugate to @a. As was extensively discussed in 
[71, the variables Au form a basis in the cotangent space to M Z N :  the 4N variables (@', Aa) 
can be considered coordinates on-the cotangent bundle over M ~ N .  Under diffeomorphisms 
on M Z N ,  A, transforms like the derivatives a,, fin in the same representation of Sp(2N) 
as xe and qa in the representation dual to it. The motivation for introducing the extended 
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Poisson structure is that antisymmetric tensor fields on MZN are equivalent to scalar fields 
on Mext.  (In this context 'tensor' means any object xaby where Zab is not necessarily in 
the vector representation.) The equivalence mentioned above is established by representing 
the field xt$;(q$) by the following function on MeXt 

(2.18) 1 b,-.P, j7(4. r ) ,  l i)  = p!4! xa, ... U, (4) lip, . . ' lip,$' ' . ' If'. 

If we now introduce the 'super-Hamiltonian' 

f? = ha(4h + ~ f i u & d 4 ) ( ~ C " b ~ p q 6  (2.19) 

it is easy to show that the Lie derivative of &$ is realized as the extended Poisson 
bracket with f? 

 where^ (lhx)' is constructed from fh,&::$ in the same way as 
Equation (2.16). for instance, is now equivalent to 

from ,y in (2.18). 

,., 
at? = wy j7iepb = -(hx)" (2.21) 

with j7 = xaqu. For a given representation of Zab, (2.21) with j7 given by (2.1 8) generalizes 
the time evolution (2.16) in the sense that now x is allowed to cany any number of lower 
indices on which (Eub): acts from the left and upper indices on which it acts from the 
right. Because the variables qa and anti commute,^&::$ has to be antisymmetric in all 
upper and lower indices. 

From the extended Poisson formalism it is a small step [7] to the path integral which 
provides a formal solution of (2.16) and its generalizations. Let us consider the following 
phase space path integral over paths on Me,  

-~ 

with the boundary conditions qY(f l .2)  = q4y~z and qU(t l ,z)  = q:,? From the terms in 
the exponential containing time derivatives one concludes that the operatorial formalism 
equivalent to the path integral (2.22) is based upon the commutation relations 

(2.23) 

(here [., .I denotes the Z2-graded commutator). In a Schmdinger type representation of the 
algebra (2.23) we can represent the 'coordinates' and f as multiplication operators and 
the 'momenta' A. and f i m  as derivatives 

- a  
- aty q --. . a  

av A= = -I- 
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The representation space is spanned by functions of the form 

1 
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(2.25) x (4 .v)=C:  Xcllal..Up(4) rla'qa2. '~7P.  
P p .  

If we are dealing with a finite-dimensional representation of Yb, the indices @, run over 
finitely many values only and the summation over p terminates at some point due to the 
antisymmetry of the q's. If, for instance, Zab = xab fom, then xu ,... mp + x. ,... ,+ is a P- 
form and the expansion of a generic function ~ ( 4 ,  q) involves monomials with at most 2N 
anticommuting variables. In this case qa + qa transforms as a vector under Sp(2N). 

For the 'wavefunction' (2.25) we postulate the Schrodmger type equation 

(2.26) 

with 
of (2.26) 

given by (2.19). It is then obvious that the path integral (2.22) provides the solution 

x(4. v .  t )  = / d4odqo K(4. q, t: I 40, qo. ro)x(400, m, to). (2.27) 

Inserting (225) into (2.26) it is easy to convince oneself that the time derivative of the 
coefficient functions x ~ , . . . ~ ~ ( + ,  r) is again given by their Lie derivative 

arxe, ...&% I) = -~hXe,. . .&lo. (2.28) 

This shows that (for tensors with lower indices only) the 'classical' equation (2.21) is 
completely equivalent to the 'Schrodinger type' equation (2.26). The reason for this 
equivalence of the classical and the 'quantum type' formulation can be. traced back to 
the fact that the Lagrangian entering (2.22) 

I L=&@+'- lqaq -= -77 
= A.(@ - h'(4)) + ili.[SeBar -t $iKd#4(X(2b)*B]qP (2.29) 

gives rise to a kind of topological field theory [I l l  in which the fermionic quantum 
fluctuations exactly compensate for the bosonic ones. In this manner the functional 
integral (2.22) is exactly localized on the solutions of fhe classical equations of motion 
resulting from (2.29). We observe that Aa and fia enter 1: as Laprange multipliers for the 
equations of motion of and q* 

(2.30) 

(2.31) 

For X Q h  in the vector representation (2.12). the topological field theory aspects have been 
discussed in detail in 1121 to which the reader is referred for further information. Here we 
only remark that in the vector representation (where we used [7] the notation P,  for the 
Grassmannian variables) the equation of motion (2.31) reads 

~ ( t )  = ahhu(4(t))ch(t).  (2.32) 
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This equation is known as Jacobi’s equation [13]. It describes small fluctuations around the 
solutions of Hamilton’s equation (2.30). In fact, if we let @(t) + @(t)+s@(f)  in (2.30) and 
expand to first order in s@(t) ,  we find exactly (2.32) with P ( t )  = &bn(t). In [7] we argued 
that the time-dependent variable c’(t) should be interpreted as a basis in the tangent space 
to the space of classical trajectories @zl(t). A similar interpretation can be given for the 
time independent Grassmannian variables c“ in the Schmdinger-like picture we used before: 
at a fixed point @ E Mzw they provide a basis of the tangent space TQMZN. Thus they 
can be identified with the differentials d@’. Similarly the antighosts E, span the cotangent 
space T$M*#; they correspond to the basis elements 3,. In I71 we have exploited this 
correspondence in order to reformulate all the operations of the exterior calculus on phase 
space (exterior derivative, contraction, Lie derivative, Lie brackets, etc.) in terms of the 
extended Poisson brackets (2.17). It is the purpose of the present paper to give a similar 
discussion for the case when the Grassmannian variables are in the metaplectic rather than in 
the vector representation. For metaplectic spinor fields most of the operations of the exterior 
calculus, such as exterior derivative, say, are not defined. Therefore we shall concentrate 
on the Lie derivative (2.21) which, in any representation, can be represented by an extended 
Poisson bracket. 

Before closing this section we mention a subtlety which is absent in the vector case. 
If the representation of E*.* is such that # 0, then the Hamiltonian (2.19) will 
suffer from an ordering ambiguity because, according to (2.23). pulling & through qfl gives 
rise to a commutator term. For (2.21) and (2.26) to be exactly equivalent, the Grassmannian 
piece of the Hamiltonian must be ‘antinormal‘ ordered, i.e. the ri. = a faqa operator should 
be to the right of $. 

3. The metaplectic group Mp(2N) 

Let S denote a symplectic matrix in the vector representation. With any S E Sp(2N) we 
can associate a unitary operator M ( S ) ,  M ( S ) t  = M(S)-’, acting on an infinitedimensional 
Hilbert space V ,  such that the map S H M ( S )  provides a representation of Sp(2N). This 
map is a two-to-one homomorphism: both + M ( S )  and - M ( S )  represent the same group 
element (therefore the notation M ( S )  is slightly misleading: we always have to carefully 
keep track of the correct sign) thus [31 

M(~I)M(SZ) = *:M(SIS2). (3.1) 

The operators M ( S )  form the metaplectic group Mp(2N) which is the covering group 
of Sp(2N). Objects transforming under Sp(2N) as ,y H M ( S ) x  are called metaplectic 
spinors [I]. 

The representations of Spin(1.n - 1) follow from the representations of the Clifford 
algebra 

y’y” + y”y ”  =Zqfi” (3.2) 

in a well known manner. The representations of Mp(2N) follow from the metaplectic 
Clifford algebra [4,10] 

y‘ y h  - y b  y“ = 2imuh (3.3) 

in a similar way. Because of the crucial minus sign on the LHS of (3.3) this algebra does 
not admit finite-dimensional matrix representations. The y-matrices are rather operators~on 



6326 

an infinite-dimensional Hilbert space V. Imitating the procedure known from spinors on 
spacetime we specify a matrix S E Sp(2N) and tq to fmd an operator M ( S )  on V such that 
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M ( s ) - l y " M ( s )  = Snbyb. (3.4) 

We choose S infinitesimally close to the identity and parametrize Sab as in (2.12). For M (S) 
we make the ansatz 

M ( S )  = 1 - 4iKabZmw oh 

Equation (3.4) leads to the condition 

[ y " ,  z & ~ ]  = i (dbyc  + oUcyh) 

which is solved by 

xgl* = +(Yy + &a).  

(3.5) 

(3.6) 

(3.7) 

We see that any representation of the y's gives rise to a representation of the generators 
E::,, in terms of which the group elements of Mp(2N) are then given by (3.5). We 
consider only representations in which the yn are Hermitian operators with respect to the 
inner product on V. Then the generators a~ Hermitian too and M ( S )  is unitary 

(Z:ah)+ = EC"b (3.8) 

M ( S ) t  = M(S)-'. 

[ x ' b ,  E''] = i (o*cxM +obC@ +mndxhc + o * d ~ ~ ~ ) .  

For later use we note that (3.7) implies 

(3.9) 
Next we give two explicit examples of the above construction. 

3.1. The oscillator representation 

We choose the Hilbert space V to be the. N-fold tensor power of the Fock space of the 
harmonic oscillator. Let ai and a!, i = 1, . . . , N, denote the corresponding annihilation and 
creation operators with the usual commutation relation 

[ai, a;] = ~ i j  i, j = 1,. . . , N 
V is spanned by the basis vectors 

(3.10) 

Ibl) E Inl) Inz)-..lnN) 

with In;) (rz;!)-l/z(a~)"~ IO) where ni = 0, 1,2,3, .  . .. Hence the generic 'representation 
index' (Y is now a set of N non-negative integers: (Y + [ n )  E ( n , ,  nz ,  . . . , nM), nr = 
0,1,2,. . .. Defining 

t yk = ak +ak 

y N+k = i(ak - a,) 
(3.11) 

t k = I, . . . , N 

it is easy to see that these operators satisfy the commutation relations (3.3). 
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3.2. The representation 

Here we exploit the fact that the metaplectic Clifford algebra is essentially the same as the 
Heisenberg algebra We choose V to be the Hilbert space of a quantum mechanical system 
with N degrees of freedom whose phase space has the topology of RzN. The position 
operators 5? and the momentum operators ?k satisfy the canonical commutation relations 

(3.12) [p,;;j] = ~[?,2j] = O =  [n -k ,n r-j ] k, j = I ,  ..., N. 
Combining i? and Fa into 

(3.13) -4-k , x )  a = 1 ,  ..., 2N 

equations (3.12) read 

ipp - py ~= %"Oh. (3.14) 

Comparing (3.3) with (3.14) we &e that the metaplectic y-matrices can be realized & 
position and momentum operators 

(3.15) 1IZ-a 
Y o  = (2/f i)  v . 

In the representation in which ? 'is diagonal, say, we have (k = 1, . . i ,  N) 

(3.16) . ,  
(yN+k)xy = (2/h)l" (XI ~k ly) = -i(ur)'/ZaksN(x - y) 

so that the generic representation index a stands now for the eigenvalue of 5?: a --f x = 
(x')  E RN. In the bra-ket notation upper and lower indices corresponds to ket and bra 
vectors, respectively. In this representation the generators of Mp(2N) are second-order 
differential operators 

(fKohE$t:ta)ry = [ - fKkja 'a j  - fiKN+k,j(Xka' + a h k )  f !jKN+k.N+jXkXj]8N(X - Y) 
(3.17) 

(we set f i  = 1 from now on). We shall use the implicit summation (integration) convention 
also for the variable x which runs over an infinite set of values. Let Ip) be a vector in the 
representation space V with complex components 

v = cr I +) (3.18) 

and let (+I E V' be the vector dual to I+) with 

($11) =~$.r = (+"I*. 
Then the dual pairing 

~(3.19) 

(x I J I )  = x,JI-" = (x")*ll/" = / dNx (,y")*$" (3.20) 

is the usual inner product on L2(RN, dNx). 
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4. Spinor fields on MZN 

The tangent bundle over phase space, T M m ,  has MZN as its base manifold, and the fibres 
over each point @ E M ~ N  (the local tangent spaces TQMZN) are copies of RZN. The 
structure group Sp(2N) acts on the fibres in the vector representation. Let us now consider 
the associated ‘spin bundle’ where the structure group acts on the fibres in the metaplectic 
representation. The fibres are now copies of the Hilbert space V introduced in the previous 
section. At each point 4 E M a  in the base manifold we erect a local Hilbert space VQ 
which plays a role analogous to T ~ M ~ N .  Depending on the concrete realization of we 
may think of VQ, for 4 fixed, as a Fock space or as the space of square integrable functions 
over R N ,  say. A section through the spin bundle is locally given by a function 

E Gozzi and M Reuter 

llr : M Z N  + V @ H I@; 4) E VQ. 14.1) 

Here the notation 1.; @) indicates that this vector ‘lives’ in the local Hilbert space at the 
point 4. At the level of matrix elements the function (4.1) is defined by the components 

llrw = (x I +; 4) (4.2) 

i.e. for each @ we specify an (infinite-component) vector in the local Hilbert space V,. 
We shall use the ‘?-representation’ from now on. The operators ? = (??‘,p) should be 
carefully distinguished from the operators @ = (p,?) appearing in the conventional 
canonical quantization of the system ( M ~ ~ ,  H ) .  The operators @ act on the quantum 
mechanical Hilbert space Vqm, which is a global object, unrelated to any specific point of 
phase space. Here, instead, we are dealing with an infinite family of Hilbert spaces V+ 
labelled by the points of phase space. The operators Fact on these local Hilbert spaces. 

By replacing V by the dual Hilbert space V’ we arrive at the dual spin bundle. Its 
sections are locally described by functions 

XA4) = (x; 4 I x )  (x; @I € v;. (4.31 

In our formalism it is natural to consider also ‘multispinor’ fields 

(4.4) 
A-, ”’.‘? 

@ - XY,...Y, (4) 

which assume values in the tensor product 

v; @v; @. . . @V$@V, @V, 69.. . @ v, . , 
p facron q f a ”  

(4.5) 

which is spanned by vectors of the form 

I+1; @) @ . . . @ l $ q ; @ )  @ (x1;GI @...@ (xp;@I. (4.6) 

We assume that x of (4.4) is completely antisymmetric in its upper and lower indices. 
Therefore it can be represented by a monomial in q and rj 

(4.7) 
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This is a special case of (2.18): the variables qx transform in the metaplectic representation 
now, and f x  in the representation dual to it. Their extended Poisson bracket is 

{ qz' - Y ]  cpb =,-is: - i p y x  - Y). (4.8) 

Now we are in a position to apply the formalism of section 2 to the metaplectic multispinors. 
The 'super-Hamiltonian' is defined as 

(4.9) 

where : : denotes the anti-normal ordering (cf the remarks at the end of section 2). Hence, 
w w e  have discussed already, the Lie derivative along the Hamiltonian vector field is given 

(GI 2 I e p b  = -(lhX)*. (4.10) 

% = h " ( @ ) L  f ;&b(@) : i ~ ( % t ~ ) x ~ q ~  : 

by 

Inserting (4.7) one obtains 
4 

(6) YI~"y,-lrY,+I"~Yq (4) h"(@)aaX;:::;i(@) + $c % b ( @ ) ( ~ i ~ m ) " ~  Xrx-r, 
j= l  

(4.11) 

We introduce time dependent fields x(@, t )  in such a way that the only effect of the time- 
evolution is to drag the field along the Hamiltonian flow 

(4.12) 

It is interesting to study bilinears formed from a spinor field ?(@) and a dual spinor 

x,...xa X I '  ..Iq afxyl...y, (@, t )  = -1hXY I..1 Y p  (@, t ) .  

field xx(@) (in the following, x is not necessarily the dual of @). We define 

E ( @ )  = XU)$(@) = X . r ( @ M Y @ )  

TU(@) = X(@)V"$(@) = xx(@)(Y")xy$y(@) (4.13) 

RGh(@) = x(@)%ia@(@) = X A @ ) ( ~ ~ ~ ~ ) ' ~ @ ~ ( @ )  
where, as usual, integration over x and y is understood. Using the Leibniz rule (which, in 
our approach, is equivalent to the Jacobi identity for the extended Poisson brackets) we find 
for the Lie derivative of the bilinears (4.13) 

lhE=h'a,E '(4.14) 

IhT" = h'acT" - ach"T' (4.15) 

!,,Rob = hCacRah - achaRcb - achbRaC (4.16) 

where (3.6) and (3.7) have been used. We observe that E ( @ )  transforms under symplectic 
diffeomorphisms as a scalar, TO(@) as a vector, and RSb(@) as a symmetric tensor. We shall 
see shortly that T U  and Rab are related to translation and rotation generators, hence their 
names. Equation (4.14) shows that E = x$ transforms under any canonical transformations 
and, in particular. under the time evolution, lie a scalar density e(@, t ) ,  see (2.4); Similarly 
(4.15) and (4.16) are special cases of (2.5) for vectors and second rank tensors provided the 
dynamics of ,yx and @" is govemed by the equation (4.12). 
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5. The 'worldline' spinors 11 and ij 

Next we consider the path integral (2.22) specialized for Cab = E$pels in the &representation. 
First we look at the classical equations of motion resulting from the corresponding 
Lagrangian 

E =  L,($ -ha(#)) + itix[sxyal + f ia ,abH(#)(~~~pels )xy]~y .  (5.1) 

and for the spinors they are 

Recalling (3.17) we see that (5.4) has the form of the Schr6dinger equation 

ialq = E@)? 

of a particle_whose configuration space is RN and whose dynamics is governed by a 
Hamiltonian H"' = with a quadratic potential 
-. 

= -iakajHakaj 2 - fiaN+&H cxkaj + a j 2 )  + $N+&.,+jH X k d .  (5.6) 

This Hamiltonian is explicitly time dependent: the second derivatives of H have to be 
evaluated at the point @'(t). Equations (5.4) and (5.5) are the metaplectic analogues of the 
equations 

in the vector representation where the Grassmamian variables are denoted by c' and 
Fa, We mentioned already that (5.7) is the Jacobi equation describing small fluctuations 
s f l ( t )  = P(t) around classical solutions # ( t )  of Hamilton's equation (5.2). The solution 
of (5.7) reads 

P(t) = S",(t)ch(O) (5.9) 

with the Jacobi mamx 
I 

S( t )  = 'Texp &'N(r') (5.10) 

where is the time-ordering operator and where N is the matrix whose elements are 

N'b(t) s abh'(#(t)) s O"ababH(@(t)). (5.1 1) 
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It is easy to see [3,9] that S(t)  is symplectic: S(tJ E Sp(2N). The matrix NQb is the 
counterpart of the quadratic Schriidinger operator H" in the vector representation. The 
solution of (5.4) is given by 

Il'(t) = M(S(t))",l7Y(O) (5.12) 

with the unitary time evolution operator [3] 

(5.13) 

Note that S(t)  and M(S(t)) are functionals of the path @'(f). The operator M(S(t)) is an 
element of the metaplectic group, M(S(t)) E Mp(2N). It represents the Jacobi matrix Pb in 
the spinor representation. In general the notation M = M(S) would be ambiguous because 
of the two-to-one homomorphism between S E Sp(2N) and M E Mp(2N). However, 
in the present case, the continuity of the timeevolution and the fixed initial condition 
S(t = 0) = 1, M(t = 0) = 1 makes the relation hetween S and M unique 131. 

Equations (5.9) and (5.12) should be interpreted as follows. We start from a trajectory 
@'(t) and calculate the corresponding Jacobi matrix Sa&) for t 0. At = 0, the 
variable P(0) is a vector in the tangent space T+(o,&N. For t 2 0, the P(t) given by 
(5.9) 'lives' in a different tangent space: cn(t)  E T+(,,Mw. Equation (5.9) describes how 
P(t) is 'transported' along the one-parameter family of tangent spaces T+(,)MzN which is 
associated with the classical path @'(t). An analogous argument applies to the metaplectic 
spinors q. For different times, q( t )  is a vector in different local Hilbert spaces: q ( t )  E U+(,,. 
Equation (5.12) describes the change of q as it is dragged along 6"(t) from to U+(,,. 

The importance of the classical solution (5.12) stems from the fact that the path integral 

(5.14) 

with the boundary conditions qY(t1.2) = @& and q x ( t l . ~ )  = & can be solved exactly in 
terms of the classical solution 

z"e(@z, qz, tz; 61, VI. tl) = 8(h - 4cdf; 41)) S(QZ - M(S(t2; 6I)hl). (5.15) 

Here the solution &(t; 61) is subject to the initial condition &(O 61) = 41, and S(r; 61) 
is the Jacobi matrix (5.10) for exactly this classical path. Because of the ordering 
ambiguity mentioned in section 2, (5.15) is valid only for a specific discretization of the 
path integral (5.14), namely the one corresponding to 'antinormal' ordering. Any other 
discreti,etion would lead to an additional path dependent phase factor on the RHS of (5.15). 

Next we investigate the time evolution of the bilinears formed from the variables qx 
and ij,. We consider 

of (5.2) and the operator M(S(t)) 

Eft) = ii(t)v(t) = Vx(t)q"(t)  

2- = V(t)v"q(t) = V x ( f ) ( v Q ) ~ , m  (5.16) 

R"*W = il(t)Z;bhtaq(t) = ijX(t)(Z$yyqY(t). 
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These bilinears should not be confused with the similar ones in (4.13): in (4.13) the fields 
are defined on all of phase space, whereas the objects in (5.16) are defined along some 
fixed trajectories #( t )  only. In an obvious analogy, 1/Tx(#) and q"(f) can be visualized as 
'spacetime' and 'worldline' fermions, respectively. Using (5.4) and (5.5) one finds that 

a,€@) = 0 (5.17) 

a,T"(t) = a b h " 7 q t )  (5.18) 

a,zUb(t)  = a c h = ~ c b ( t )  + achbRuc(t). (5.19) 
We can look at these equations in two rather different ways. From a geometrical point 
of view they express the fact that the time evolution drags E, Tu and Rob along the path 
# ( f )  whereby they behave as a scalar, a vector and a symmetric tensor, respectively. With 
this interpretation (5.17H5.19) may be thought of as a restriction of (4.14H4.16) (with 1, 
replaced by -a,) to the points of the trajectory We may also look at (5.17)-(5.19) as 
a manifestation of Ehrenfest's theorem of elementary quantum mechanics which says that 
the expectation values of observables, which are at most quadratic in the coordinates and 
momenta, evolve exactiy according to the c1 lssical equations of motion. In the present case 
the theorem applies to the operators and Ek acting on the local Hilbert spaces V+. In 
fact, 'Ia i s  the 'expectation value' :y"q of the 'observable' y", i.e. of 3 and Ek, with 
respect to the 'wavefunction' qx( t )  = q ( x ,  t ) .  Similarly, Rob is the 'expectation value' of 
products such as %?j. With this interpretation, (5.17) expresses the conservation of the 
'norm' i iq in the local Hilbert space V+ 

We observe that (5.18) coincides with (5.7) for the vector ghosts. This suggests the 
correspondence 
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P - ijy"q (5.20) 

indicating that the metaplectic worldline spinors may be thought of as 'square roots' of the 
vectors P, i.e. of the Jacobi fields. 

In the operatorial formalism equivalent to the path integral (5.14) the anticommuting 
variables satisfy 

[Gx, q q  = 8; E? P ' ( X  - y). 

[ E ,  '1 = 0 

(5.21) 

This implies the following commutators for the bilinears (5.16) 

[E ,  7P] = 0 

(5.22) 

These are the commutation relations for the Lie algebra of the inhomogeneous metaplectic 
group [3] IMp(2N). It is the semi-direct product of Mp(2.N) generated by Rob, and the 
Weyl group generated by 'P and E. Comparing (5.22) to the Poincad algebra we see that 
Rub and T" play the role of Lorentz rotations and of translations on phase space. This 
analogy is incomplete, however. On phase space the translations Tu do not commute: 
the Weyl group contains the central extension E. Usually this fact is expressed by saying 
that the Weyl operators T ( @ )  exp[i#"wab& provide a projective representation of the 
translations T(#t)T(#z) = exp[~i#i'w&]T(@~ + &). This implies that we pick up a 
phase when we go around a loop in phase space (see [3] for a detailed discussion). 
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6. The metaplectic spinors as semiclassical wavefunctions 

In this section we reinterpret the variables q"@) and ij&) from a slightly different point 
of view. Let us consider the quantum mechanical system defined by the Hamiltonian 
H(#P) = H(p',q') .  We know that transition amplitudes can be expressed as Feynman 
path integrals 

The integration is over paths @(r) = (p'( t ) ,q'( t ) )  subject to the boundary conditions 
qi(rl,z) = qi,z. Let us evaluate (6.1) semiclassically. To this end we split the integration 
variable V(r) into a classical part &(t),~which solves Hamilton's equation, and a quantum 
fluctuation q'(i) = (d( t ) ,x i ( t ) ) :  p(r) +q"(r). In this way we obtain 

where the sum is over all relevant classical solutions, and 

A(XZ, tz; XI, rl; [ h l )  

with the quadratic Hamitonian 

[$oUo,~Yj6 - H"'(q': qh)] } (6.3) 

H'~W; ,,fa = ~a.a,H(&,(t)) 9 V .  (6.4) 

The boundary conditions forthe integral (6.3) arex'(rl.2) = where q& = q ~ l ( r l , z ) + x ~ , 2 .  
If qL1(t) passes exactly through the points qi,2 at time r = r1,2 then x& = 0. Let us also 
consider the possibility that there is no classical path which connects q; and qi exactly but 
that the amplitude is nevertheless dominated by a classical trajectory (or several) which 
passes near q; and qi at r = f1.z. In this case # 0. From (6.3) with (6.4) we lean that 
the quantum correction A is a solution of the Schriidinger equation 

A 

i & W .  t ;  XO. to; [@d)~ = H'2'A(x, I; X O ,  to ;  [&ID. (6.5) 

In this equation 

(6.6) 12) - 1 H - TaoabH($cl(r ) )  F? = $Kob(&l(t)) x:k 
is exactly the Schrtidinger Hamiltonian which appears in the equation of motion of the 
worldline spinors q(t) ,  see (5.4) and (3.7) with (3.15). As a consequence, (6.5) coincides 
with the equation of motion (5.4) for q"(t) A(x , t ) .  This allows for a geometric 
interpretation of the 'index' x E RN which labels the matrix elements of in the 
?+?-representation. Originally the operators = (Z' ,F)  were introduced in (3.15) in 
order to represent the metaplectic y-matrices. Here we see that they are the operatorial 
counterpart of the fluctuation variable qc(t) = V(t) - in the path integral. In this 
way the eigenvalues of F, i.e. the 'representation indices' x , acquire a direct physical 
interpretation related to the base manifold M b  rather than the jibre V+: given some point 
4 = ( p ,  q )  E M a  they parametrize nearby points with the same coordinate p as ( p .  qfn). 
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This is obvious from the initial condition of the path integral: 41.2 = qCj(f1,2) + q z .  (Since 
the initial and final values of the momenta are integrated over, no corresponding shift of p 
is obtained.) 

The analogous situation in the vector representation, i.e. in classical mechanics, is well 
known [12]. Let us fix a point 6 E Mzw and let us consider the vectors c E T + M ~ N  living 
in the tangent space at 6. Then, heuristically speaking, these vectors parametrize the points 
in the neighbourhood of 4 as &' = @+EC (with E an anticommuting parameter [7,121). This 
means that (locally) points in the fibre are related to points in the base space. Switching 
on the Hamiltonian flow and repeating thii construction at each point along some classical 
trajectory #(t). the 'worldline vector fields' c(& living in the tangent space to the space 
of classical paths, paramenize nearby trajectories via #(t)  = $( t )  + &c(f). Hence c(t) 
obeys the Jacobi equations (5.7). Its solution tells us the influence of a change of initial 
conditions, &5(tj) = E C ( ~ I ) ,  on the trajectory for any later time tz > tl: 66(fz) = &c(tz). 

In the metaplectic case the situation is similar: the worldline spinors q( t )  are the 'square- 
mot' of the Jawbi fields c(t) in the sense that P - ijy"q. Bilinears formed from q living 
in the fibre V, can be used to parametrize nearby points in the base as 
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6' = = 4a + iiy.q. (6.7) 

In this sense Vz @ V, is equivalent to TQMB. More importantly, the spinors f ( t )  = 
A(x, f: X I ,  f,: [6J) themselves are semiclassical wave functions. They give us the 
probability amplitude of finding the particle at time f at a distance x relative to 4&) 
given that, at time i ~ ,  it was at distance X I  from 4&). 

7. Conclusions 

In the previous sections we introduced a path integral for the time evolution of metaplectic 
spinor fields which can be defined on the phase space of any Hamiltonian system. The path 
integral includes an integration over worldline spinors q(t)  which assume values in local 
Hilbert spaces V,. They are the quantum mechanical analogue of the worldline vectors 
c'(f), living in T+Mz,v, which appear in classical mechanics. The classical quantities can 
be interpreted as Jacobi fields, the metaplectic spinors are semiclassical wavefunctions. 

The kinematical framework outlined in this paper lends itself for further investigation 
in various directions. A particularly interesting aspect concems the fact that not every 
symplectic manifold can support metaplectic structures [Z]. Thii is analogous to the well 
known fact that there. are spacetimes which cannot carry spin structure. Witten has shown 
[14] that in this case the supersymmetric quantum mechanics of a spinning particle on this 
spacetime is suffering from a global anomaly. Using similar techniques, it can be shown 
that the path integral discussed in this paper has a global anomaly if one attempts to define 
it on a symplectic manifold which cannot carry metaplectic structures. We shall come back 
to this point elsewhere [15]. 

Further open problems to be explored include the implementation of the background 
split symmetry [I61 in the metaplectic path integral. In the classical case this symmetry is 
implemented by a BRS invariance 171 which guarantees that a shift in the classical trajectory, 
$&), can be compensated for by a corresponding contribution from c"(t). Since c'(r) is 
replaced by the composite fy"q in the metaplectic case, a variant of the classical BRS 
symmetry might also be present here, but more work is needed. 
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